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Abstract 

 
At EUROCRYPT 2019, a new block cipher algorithm called BISON was proposed by 
Canteaut et al. which uses a novel structure named as Whitened Swap−Or−Not (WSN). 
Unlike the traditional wide trail strategy, the differential and linear properties of this 
algorithm can be easily determined. However, the encryption speed of the BISON algorithm 
is quite low due to a large number of iterative rounds needed to ensure certain security 
margins. Commonly, denoting by n is the data block length, this design requires 3n 
encryption rounds. Moreover, the block size n of BISON is always odd, which is not 
convenient for operations performed on a byte level. In order to overcome these issues, we 
propose a new block cipher, named DBISON, which more efficiently employs the ideas of 
double layers typical to the BISON-like construction. More precisely, DBISON divides the 
input into two parts of size n/2 bits and performs the round computations in parallel, which 
leads to an increased encryption speed. In particular, the data block length n of DBISON can 
be even, which gives certain additional implementation benefits over BISON. Furthermore, 
the resistance of DBISON against differential and linear attacks is also investigated. It is 
shown the maximal differential probability (MDP) is 1/2n-1 for n encryption rounds and that 
the maximal linear probability (MLP) is strictly less than 1/2n-1 when (n/2+3) iterative 
encryption rounds are used. These estimates are very close to the ideal values when n is close 
to 256. 
 

Keywords: BISON block cipher, DBISON block cipher, Differential cryptanalysis,  
Linear cryptanalysis, WSN construction.  
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1. Introduction 

Block ciphers play an important role in the area of data storage and secure transmission in 
an open internet environment. During the past three decades, block ciphers have received a 
lot of attention from academic and industrial community.  

Generally, security and implementation efficiency can be considered as the most crucial 
aspects in the design of block ciphers. To achieve sufficient security margins, block ciphers 
commonly employ multiple encryption rounds for the purpose of achieving a satisfactory 
level of diffusion and confusion [1]. On the other hand, the internal structure of a block 
cipher is also importance since it directly affects the implementation cost and performance in 
both hardware and software. Currently, the most prominent block ciphers employ diverse 
structures such as Feistel [2, 3], SPN [4], MISTY [5] and Lai-Massey [6], among others. A 
very common approach is to implement a block cipher as a substitution permutation network 
(SPN), which was extensively used in many prominent block ciphers, including AES [4, 7] 
whose design additionally embeds the concept of wide trail strategy[8]. One important issue 
with this design rationale regards the problem of determining the differential or linear 
properties of a given cipher, which is considered to be quite a difficult task. More 
specifically, in order to ensure good resistance against differential and linear cryptanalysis, 
the so-called branch number of diffusion (linear) layer and the cryptographic properties of 
the S-boxes (used in the substitution layer) have to be taken into account [9, 10]. Due to the 
iterative structure of block ciphers and an exponential growth of possible differential/linear 
patterns, the exact security estimates are not easy to specify. An alternative design rationale 
of constructing block ciphers that achieve an optimal security level (under the ideal model 
assumption) was introduced in [11]. This method uses the so-called Whitened Swap-Or-Not 
(WSN) construction, which itself is based on the Swap-or-Not method introduced in [12] and 
applicable in the settings when the internal functions are kept secret. Furthermore, instead of 
the need for a set of random Boolean functions for the Swap-or-Not method, the WSN 
approach [11] requires only two public random n-variable Boolean functions to achieve full 
security. Actually, there are very few known instances of WSN and an encryption algorithm 
based on this approach was specified in [12] but later broken by Vaudenay [13]. Another 
example of using the WSN method is the BISON block cipher, which was proposed by 
Canteaut et al. at EUROCRYPT 2019 [14]. The design of BISON implements XOR-ing of 
the round keys by using a quadratic bent function. Additionally, BISON seems to be resistant 
against differential cryptanalysis [15], linear cryptanalysis [16], and algebraic cryptanalysis 
[17] provided that the number of rounds is approximately 3n, where n is the data block 
length and n is odd. In particular, the MDP value of BISON can be easily evaluated without 
the exact details about its components, which is completely different to the wide trail 
strategy.  

Consequently, the encryption speed of BISON is quite low due to a large number of 
rounds used and a large n-bit input size. For instance, assuming that n=127 implies that there 
are 381 rounds and additionally one needs to implement a large 126-bit nonlinear function 
which is quite demanding. To overcome these issues, we propose a new block cipher that 
borrows the design ideas from BISON, named DBISON. More specifically, the length of 
data block of DBISON is even and therefore the input x can be divided into two halves Lx  
and Rx which are then processed in parallel using a similar structure as in Feistel networks.  
The details of round operations are given in Fig. 1 and, additionally, the used parameters are 
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described in Definition 4. Notice that, to complete the round operation, the left and right 
branch are swapped but in the final round the swap operation is not performed.  

 
   
 
 
 
 

 
 

 
 
 
 
 

 
 Fig. 1. The round function of DBISON  

It will be shown that DBISON is resistant against both differential and linear cryptanalysis 
when the number of rounds r reaches n. More specifically, we show that the MDP value 
equals 1/2n-1 when n encryption rounds are used, whereas the MLP is strictly less than 1/2n-1 
if at least (n/2+3) encryption rounds are applied. It is worth mentioning that the MDP can 
almost reach the ideal value 1/2n if the size of data block n is close to 256. A comparison 
between BISON and DBISON is given in Table 1.  However, to ensure that the algebraic 
degree of DBISON attains its maximal value n, the number of rounds is approximately 3n. 
DBISON offers a significant advantage over BISON in terms of encryption/decryption speed 
since the input size is divided into two halves (each having n/2 bits) which are processed in 
parallel.  

The rest of this paper are organized as follows. In Section 2, the DBISON block cipher is 
fully described. In Section 3, the differential cryptanalysis against DBISON is examined and 
the estimates of its MDP are provided. In Section 4, the resistance of DBISON against linear 
cryptanalysis is analyzed and the bounds on its MLP are derived. In Section 5, certain 
specific instances of DBISON are specified. Some concluding remarks can be found in 
Section 6. 

  Table 1. Comparison of BISON and DBISON  
Algorithm Nonlinear function MDP MLP  Source 

BISON        n-bit input size 2-(n-1) 

(n-round) 
2-(n-1)  

(n-round)    [14] 

DBISON Two n/2-bit input halves 
 processed in parallel 

≤ 2-(n-1) 

(n-round) 
< 2-(n-1)  

((n/2+3)-round)    New 

2. Preliminaries 
Definition 1 [18] Let F  be a function from 2

nF  into 2
nF .  For any 2,  nu v F∈ , define

( ) ( ) ( )

2

, 1 • ⊕ •

∈

= −∑
n

u x v F x
F

x F

W u v , where •  denotes the inner product in 2
nF , that is

1 1 2 2 ... n nu x u x u x u x• = ⊕ ⊕ ⊕   . The multiset ( ){ }2,   ,  n
FW u v u v F∈  is called the Walsh 
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spectrum of F . 
Definition 2 [19] The r -round differential characteristic of an iterative block cipher is 

denoted as ( )0 1, ,..., rδ δ δΩ = . Assuming that the round keys 1 2, ,..., rk k k  are independent and 
uniform, the differential characteristic probability ( )DP Ω  is defined as 

( ) ( )1
1

DP DP ,
r

i i
i

δ δ−
=

Ω =∏ , i.e. it is the probability that the difference between input pair is 0δ  

and the difference between intermediate state ( )*,i iy y  is ,  1i i rδ ≤ ≤ . 
Definition 3 [19] The r -round linear characteristic of an iterative block cipher is denoted 

as ( )0 1, ,..., rθ θ θ θ= . Assuming that the round keys 1 2, ,..., rk k k  are independent and uniform, 

the linear characteristic probability ( )LP θ  is defined by ( ) ( )1
1

L P LP ,
r

i i
i

θ θ θ−
=

=∏ , i.e. the 

probability that the input mask is 0θ  and the mask of an intermediate state iy  is ,  1i i rθ ≤ ≤ . 
For the input and output difference ( ),α β , it is a difficult task to compute the MDP of

( ),α β , even for a small number of rounds. However, computing the MDP of an r-round 
differential characteristic ( )0 1, ,..., rδ δ δΩ =  is an easier task, and the MDP of Ω  also reflects 
the ability of the cipher to resist differential cryptanalysis. A similar reasoning applies when 
the MLP values is considered, thus having an initial mask ( ),a b  and an r-round linear trail

( )0 1, ,..., rθ θ θ θ= . We will investigate in detail the properties of DBISON in this context, 
hence its resistance against differential and linear cryptanalysis by providing the estimates on 
MDP and MLP using Ω  and θ , respectively.   

Definition 4 Let the data block length of DBISON be 4 2n m= + , where m  is a positive 
integer. The input x  of any encryption round is divided into the left half and right half, i.e. 

( ),L Rx x x= . The i-th round function ( ), 2 2:
i i

n n
k wF x F F→  is defined as  

          ( ) ( )( ) ( )( )( ), ,  
i i iR iLk w L R iR iR k L R iR L iL iL k L iLF x x x f w x x k x f w x k= ⊕ ⊕ ⊕Φ ⊕ ⊕ ⊕Φ ,              (1) 

where ( ) ( ), ,  ,i iL iR i iL iRk k k w w w= =  are round keys ( iw  is the whitened key), and iLf  and iRf  
are bent functions with / 2 1n −  variables. Moreover, 

iLkΦ , 
iRkΦ : /2 /2 1

2 2
n nF F −→  are linear 

functions and { }ker 0,  
iLk iLkΦ = , { }ker 0,  

iRk iRkΦ = , where iLk  and iRk  are generated by two 
LFSRs so that 0iLk ≠  and 0iRk ≠ , respectively. 

Remark 1 The analysis in this work follows two basic assumptions of symmetric 
cryptanalysis, i.e. the whitened keys are linearly independent, and the round keys satisfy the 
so-called random equivalence hypothesis. 

3. Differential cryptanalysis of DBISON block cipher 

The derivative of a function f   in direction  α  is defined as ( ) ( ) ( )D f x f x f xα α= ⊕ ⊕  .  
A successful application of differential cryptanalysis against block ciphers heavily relies on 
the differential properties of its substitution layer. The round function F  of a block cipher 
with n -bit input and output can be viewed as a vectorial Boolean function 2 2: n nF F F→ . 
The behavior of the derivatives of F are described by the Differential Distribution Table 
(DDT) of F, whose entries are  
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                                  [ ] ( ) ( ){ }2DDT ,   n
F x F F x F xα β α β= ∈ ⊕ ⊕ = , 

where 2
nFα ∈  is referred to as the  input difference and 2

nFβ ∈  as the output difference. 

In this context, we are primarily interested in the DDT of  the round function ( ),i ik wF x , 
which can be calculated explicitly using Theorem 1 below.  

Theorem 1 Using (1), the round function of DBISON can be rewritten as 
( ) ( )( ) ( )( )( ),  

R LL R R R k L R R L L L k L LF x x x f w x x k x f w x k= ⊕ ⊕ ⊕Φ ⊕ ⊕ ⊕Φ .            (2) 

Then [ ]DDT ,F α β  can be specified as follows:  

1) [ ]DDT , 2n
F α β =  if ( ),L R Lβ α α α= ⊕  and ( ) ( ) ( ){ }, , , , , ,0  0   R L L L L Rk k k k k kα ∈ ⊕ . 

2) [ ] 1DDT , 2n
F α β −= if ( ),L R Lβ α α α= ⊕  and ( ),  L R Lα α α⊕ ∈ ( ) ( ){ , , , ,0   L R Lkα α  

( ) ( ), , ,0    L R L R L Lkα α α α α⊕ ⊕ { } { }}, , ,0 0L L R Rk kα α∉ ⊕ ∉ , or ( ) ( ), ,0L R L Lkβ α α α= ⊕ ⊕ , 

{ },0L R Rkα α⊕ ∈  and { },0L Lkα ∉ , or ( ) ( ), ,0L R L Rkβ α α α= ⊕ ⊕ , { },0L R Rkα α⊕ ∉  and
{ },0L Lkα ∈ . 

3) [ ] 2DDT , 2n
F α β −= if ( ),L R Lβ α α α γ= ⊕ ⊕ , ( ) ( ) ( ){ }, , , , , ,0  0  0  L R R Lk k k kγ ∈  and L Rα α⊕

{ },0 Rk∉ , { },0L Lkα ∉ . 
4) Otherwise, [ ]DDT , 0F α β = . 
Proof  Using the definitions of DDT and ( )F x , [ ]DDT ,F α β  can be deduced as:  

[ ]DDT ,F α β  

( ) ( )( ) ( ) ( )( )( ) ( ){ }2 ,  , .
R Lk L R k LR L

n
R R k L R R L L k L L L R Lx F D f w x x k D f w x kα α α α α α βΦ ⊕ Φ= ∈ ⊕Φ ⊕ ⊕Φ = ⊕ ⊕

                                                                                                                                                  (3) 
Clearly, [ ]DDT , 0F α β =  if ( ) ( ) ( ) ( ){ } *, , , , , , , :0  0  0  L R L L R R Lk k k k Kα α α β⊕ ⊕ ∉ = .  

In the following, we split our analysis of  ( ),L R Lα α α β⊕ ⊕  into four cases. 
Case 1. ( ),L R Lβ α α α= ⊕ . 
By (3) and 0Lk ≠ , 0Rk ≠ , it can be deduced that 

[ ] ( ) ( )( ) ( ) ( )( ){ }2DDT , 0  and  =0 .
R Lk L R k LR L

n
F R R k L R L L k Lx F D f w x x D f w xα α αα β Φ ⊕ Φ= ∈ ⊕Φ ⊕ = ⊕Φ

       ① ( ) 0
Rk L Rα αΦ ⊕ ≠  and ( ) 0

Lk LαΦ ≠ . Denote ( )
LL k Lw x⊕Φ  by Lx′ .    

Since Lf  is a bent function, thus ( ) ( ){ }/ 2 1 /2 2
2 =0 2

k LL

n n
L L Lx F D f xα

− −
Φ

′ ′∈ = . Furthermore, 

LkΦ is a linear function from /2
2
nF  to /2 1

2
nF −  and { }ker ,0  

Lk LkΦ = , and therefore 

( ) ( )( ){ }/ 2 /2 1
2:  =0 2

Lk LL

n n
L L L L k LA x F D f w xα

−
Φ= ∈ ⊕Φ = . For any i La A∈ , /2 11, 2, , 2ni −=  , 

( ) ( )( ){ }/ 2 /2 1
2 0  2

Rk L RR

n n
R R R k i Rx F D f w a xα α

−
Φ ⊕∈ ⊕Φ ⊕ = =  since ( ) 0

Rk L Rα αΦ ⊕ ≠  and 

Rf  is a bent function. Therefore, [ ] / 2 1 /2 1 2DDT , 2 2 2n n n
F α β − − −= × = .  

② ( ) 0
Rk L Rα αΦ ⊕ ≠  and ( ) 0

Lk LαΦ = . [ ] / 2 /2 1 1DDT , 2 2 2n n n
F α β − −= × = . 

③ ( ) 0
Rk L Rα αΦ ⊕ =  and ( ) 0

Lk LαΦ ≠ . [ ] / 2 1 /2 1DDT , 2 2 2n n n
F α β − −= × = . 
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④ ( ) 0
Rk L Rα αΦ ⊕ =  and ( ) 0

Lk LαΦ = . [ ] / 2 /2DDT , 2 2 2n n n
F α β = × = . 

To summarize, when ( ),L R Lβ α α α= ⊕  is satisfied then [ ]DDT ,F α β  can be computed as 
follows: 

[ ]
( ) ( ) ( ){ }

{ } { }( ) { } { }( )
{ } { }

1

2

2 ,     if ,  , ,  , ,  , ,

DDT , 2 ,  if ,  and ,   ,  and , ,

2 ,  if ,  and , .

0 0

0 0 0 0

0 0

n
R L L L L R

n
F L L L R R L L L R R

n
L L L R R

k k k k k k

k k or k k

k k

α

α β α α α α α α

α α α

−

−

 ∈ ⊕
= ∉ ⊕ ∈ ∈ ⊕ ∉
 ∉ ⊕ ∉

                                                                                                                                                 (4) 
The same method can be used to address the remaining cases, and the following results are 
then obtained.  

Case 2. ( ) ( ), ,0L R L Lkβ α α α= ⊕ ⊕ .  

[ ]
{ } { }
{ } { }
{ }

1

2

2 ,     if ,  and , ,
DDT , 2 ,     if ,  and , ,

0,         if , .

0 0
0 0
0

n
L L L R R

n
F L L L R R

L L

k k
k k
k

α α α
α β α α α

α

−

−

 ∉ ⊕ ∈
= ∉ ⊕ ∉
 ∈

                                (5)  

Case 3. ( ) ( ), ,0L R L Rkβ α α α= ⊕ ⊕  

[ ]
{ } { }
{ } { }

{ }

1

2

2 ,     if ,  and , ,
DDT , 2 ,     if ,  and , ,

0,         if , .

0 0
0 0

0

n
L L L R R

n
F L L L R R

L R R

k k
k k

k

α α α
α β α α α

α α

−

−

 ∈ ⊕ ∉
= ∉ ⊕ ∉
 ⊕ ∈

                                (6) 

Case 4. ( ) ( ), ,L R L R Lk kβ α α α= ⊕ ⊕  

[ ] { } { }
{ } { }

22 ,  if ,  and , ,
DDT ,

0,      if ,  or , .
0 0
0 0

n
L L L R R

F
L L L R R

k k
k k

α α α
α β

α α α

− ∉ ⊕ ∉=  ∈ ⊕ ∈
                                  (7) 

By (4), (5), (6), and (7), the DDT of ( )F x  can be obtained.#  
Moreover, we consider the differential properties when the round function is applied 

iteratively. It is well-known that the probability of a differential characteristic of Markov 
cipher [20] can be easily calculated. In what follows, we first prove that DBISON is a 
Markov cipher. 

Lemma 1 The round function ( ),k wF x  of DBISON has the following property  

( ) ( ) ( ) ( ), , , ,Pr Prw k w k w x k w k wF x F x F x F xα β α β   ⊕ ⊕ = = ⊕ ⊕ =    .                        (8) 

Proof Let ( ) ( ){ }2
2 , ,: n

w k w k wA w F F x F x α β−= ∈ ⊕ ⊕ = , ( ) ( ){ }2 , ,: n
x k w k wA x F F x F x α β= ∈ ⊕ ⊕ = . 

More specifically,  

( ) ( )( ) ( ) ( )( )( ) ( ){ }2
2 ,  , .

R Lk L R k LR L

n
w R R k L R R L L k L L L R LA w F D f w x x k D f w x kα α α α α α β−

Φ ⊕ Φ= ∈ ⊕Φ ⊕ ⊕Φ = ⊕ ⊕

( ) ( )( ) ( ) ( )( )( ) ( ){ }2   ,  , .
R Lk L R k LR L

n
x R R k L R R L L k L L L R LA x F D f w x x k D f w x kα α α α α α βΦ ⊕ Φ= ∈ ⊕Φ ⊕ ⊕Φ = ⊕ ⊕

         If ( ) *,L R L Kα α α β⊕ ⊕ ∉ , then 0w xA A= = , and (8) holds. If ( ) *,L R L Kα α α β⊕ ⊕ ∈ , 
then wA  and xA  are calculated as below.  

Case 1. ( ),L R Lβ α α α= ⊕ . 

( ) ( )( ){ } ( ) ( )( ){ }/ 2 1 /2 1
2 20 0 .

L Rk L k L RL R

n n
w L L L k L R R R k L RA w F D f w x w F D f w x xα α α

− −
Φ Φ ⊕= ∈ ⊕Φ = × ∈ ⊕Φ ⊕ =

Denote ( )
LL k Lw x u⊕Φ =  and ( )

RR k L Rw x x v⊕Φ ⊕ = , then  
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( ) ( ) ( ){ } ( ) ( ) ( ){ }/ 2 1 /2 1
2 20 0

L Rk L k L RL R

n n
w k L L k L R RA u x F D f u v x x F D f vα α α

− −
Φ Φ ⊕= ⊕Φ ∈ = × ⊕Φ ⊕ ∈ =

 
( ) ( )( )( ) ( ) ( )( )( )/ 2 1 /2 1

2 2supp supp .
L Rk L k L RL R

n n
k L L k L R Rx F D f x x F D fα α α

− −
Φ Φ ⊕

   = Φ ⊕ − × Φ ⊕ ⊕ −      
Thus,

( ) ( )
( )( )( ) ( )( )( )/ 2 1 /2 1

, , 22
2

2 supp 2 supp
Pr .

2
k L k L RL R

n n
L R

w
w k w k w nn

D f D fA
F x F x

F

α α α
α β

− −
Φ Φ ⊕

−−

− −
 ⊕ ⊕ = = = 

     On the other hand, xA  can be calculated as follows. 

( ) ( ) ( )( ) ( ) ( )( ){ }2,   0 and 0 .
R Lk L R k LR L

n
x L R R R k L R L L k LA x x F D f w x x D f w xα α αΦ ⊕ Φ= ∈ ⊕Φ ⊕ = ⊕Φ =

         If ( ) 0
Lk LαΦ = , then ( )( )supp 0

k LL
LD fαΦ =  and LA / 22n= . If ( ) 0

Lk LαΦ ≠ , it can be 

deduced that ( )( ) / 2 2supp 2
k LL

n
LD fα

−
Φ =  since Lf  is a bent function, and  /2 12n

LA −=  (see 

Theorem 1). In both cases, LA / 22n= ( )( )2 supp
k LL

LD fαΦ− .  

For any i La A∈ , /2 11, 2,..., 2 −= ni , if ( ) 0
Rk L Rα αΦ ⊕ = , then ( )( )supp 0

k L RR
RD fα αΦ ⊕ =  and 

( ) ( )( ){ }/ 2 /2
2 0 2

Rk L RR

n n
R R R k i Rx F D f w a xα αΦ ⊕∈ ⊕Φ ⊕ = = . If ( ) 0

Rk L Rα αΦ ⊕ ≠ , it can be deduced 

that ( )( ) / 2 2supp 2
k L RR

n
RD fα α

−
Φ ⊕ = , and  ( ) ( )( ){ }/ 2 /2 1

2 0 2
Rk L RR

n n
R R R k i Rx F D f w a xα α

−
Φ ⊕∈ ⊕Φ ⊕ = = . 

In both cases,  ( ) ( )( ){ } ( )( )/ 2 /2
2 0 2 2 supp

Rk L R k L RR R

n n
R R R k i R Rx F D f w a x D fα α α αΦ ⊕ Φ ⊕∈ ⊕Φ ⊕ = = − .  

To summarize, ( )( )( ) ( )( )( )/ 2 /22 2 supp 2 2 supp
k L k L RL R

n n
x L RA D f D fα α αΦ Φ ⊕= − − , thus (8) holds. 

The similar results are easily verified for the remaining cases.#  
Corollary 1 Let ,

r
k wE  denote the r-round encryption of DBISON, where its i-th round 

function is ( ),i ik wF x  and using the round keys 1 2, ,..., rk k k . Then, we have 

( ) ( ) ( ) ( ), , , 0 , , , 1
1

Pr Pr
i i i i

r
r r

w x k w k w r w x k w k w i i
i

E x E x F x F xδ δ δ δ−
=

  ⊕ ⊕ = = ⊕ ⊕ =   ∏ . 

To describe the necessary conditions under which ( )0 1, ,..., rδ δ δΩ =  is a valid differential 
characteristic and to compute the MDP of DBISON, we need to introduce a new operation. 

Definition 5 Let { }, 0,1L Rλ λ ∈ , ( ) 2, n
L Rk k F∈ , /2 /2

2 2,n n
L Rk F k F∈ ∈ . We define a “product’’ 

between ( ),L Rλ λ  and ( ),L Rk k  as ( ) ( ) ( ), , ,L R L R L L R Rk k k kλ λ λ λ∗ = . 
By Corollary 1, the probability of having the differential characteristic ( )0 1, ,..., rδ δ δΩ =  

after r rounds is ( ) [ ]1
1

DP DP ,
r

i i
i

δ δ−
=

Ω =∏ . In particular, ( )DP 0Ω =  if and only if there is 

0 j r≤ ≤ , such that 1DP , 0j jδ δ−  =  . By Theorem 1, [ ]1DDT , 0F i iδ δ− =  if  

( ) ( ) ( )( ) ( ) ( ) ( ){ }{ }1 1 1,   ,  , ,  , ,  ,0 0 0i iL iR iR iLi L i R i L k k k kδ δ δ δ γ γ− − −∉ + ⊕ ∈ , 

which means [ ]1DP , 0i iδ δ− = . Moreover, a valid differential characteristic ( )0 1, ,..., rδ δ δΩ =  
should have the following form. 



1618                                                                                     Zhao et al.: A New BISON-like Construction Block Cipher: DBISON 

( )0 1, ,..., rδ δ δΩ = , ( ) ( ) ( )( ) ( ) ( )1 1 1, , ,i iL iR iR iLi L i R i L k kδ δ δ δ λ λ− − −= ⊕ ⊕ ∗ ,                       (9) 

where { }, 0,1iL iRλ λ ∈ , and ( ),i iL iRk k k=  is the round key.  
Theorem 2 For n-round DBISON, if the round keys satisfy ( ) ( ){ }1 1,iR i L i Lk k k− +∉ , then there 

is no nontrivial differential characteristic whose probability equals 1. 
Proof Assume ( )0 1, ,..., nδ δ δΩ =  is a nontrivial differential characteristic in (9) and [ ] 1DP Ω = , 
thus ( )1DP , 1i iδ δ− = , 1, 2,...,=i n . Especially, ( ) ( )0 1 1 2DP , DP , 1δ δ δ δ= = . By Theorem 1, 

[ ]0 1DP , 1δ δ =  if and only if ( )1 0 0 0,L R Lδ δ δ δ= ⊕  and ( ) ( ){0 1 1 1, , , , ,0 0δ ∈ R L Lk k k ( 1 ,Lk )}1 1L Rk k⊕ . 
If 0 0,δ =  by Theorem 1, it can be deduced that 1 2 ... 0δ δ δ= = = =n , thus Ω  is a trivial 

differential characteristic that holds with probability 1, which contradicts the assumption. 
If ( )0 1,0δ = Rk , then ( )1 1 ,0 0δ = ⊕ Rk . Using ( )1 2DP , 1δ δ =  and Theorem 1, we have 

( )1 1,0 δ= ∈Rk ( ) ( ) ( ){ }2 2 2 2 2 2, , , , , ,0 0 ⊕R L L L L Rk k k k k k . 
This contradicts the conditions that 1 0≠Rk  and 1 2R Lk k≠ . 

If ( )0 1 1,L Lk kδ = , then ( ) ( )1 1 1 1 1, ,0δ = ⊕ =L L L Lk k k k . From ( )1 2DP , 1δ δ =  and Theorem 1, it  
can be deduced that  

( )1 1,0 δ= ∈Lk ( ) ( ) ( ){ }2 2 2 2 2 2, , , , , ,0 0 ⊕R L L L L Rk k k k k k . 
This contradicts the conditions that 0≠iLk  and 2 1R Lk k≠ . 

If ( )0 1 1 1,L L Rk k kδ = ⊕ , then ( ) ( )1 1 1 1 1 1 1, ,L R L L R Lk k k k k kδ = ⊕ ⊕ = . Using ( )1 2DP , 1δ δ =  and  
Theorem 1, it can be deduced that 

( )1 1 1,R Lk k δ= ∈ ( ) ( ) ( ){ }2 2 2 2 2 2, , , , , ,0 0 ⊕R L L L L Rk k k k k k . 
Again, this violates the conditions that 1 0≠Rk  and 1 2R Lk k≠ . 

From the above cases, it can be concluded that there is no nontrivial differential 
characteristic with probability 1.# 

To prove that DBISON is resistant against differential cryptanalysis, we need to analyze 
its MDP. 

Theorem 3 For the differential characteristic Ω  given by (9), we have: 
1) If there is 0δ =j  and 1 0δ + ≠j , then [ ]DP 0Ω = .  
2) If there is 0δ =j  and 1 0δ − ≠j , then [ ]DP 0Ω = . 
Proof  

1)  By (9), using 0δ =j  and 1 0δ + ≠j , it can be deduced that  

( ) ( )1 , ,j jL jR jR jLk kδ λ λ+ = ∗ ∈ ( ) ( ) ( ){ }, , , , ,0 0jR jL jR jLk k k k . 

If ( )1 ,0δ + =j jRk , then 1DDT , 2n
j jδ δ +  ≠   since ( )1 ,j jL jR jLδ δ δ δ+ ≠ ⊕ . Also, 

2
1DDT , 2n

j jδ δ −
+  ≠  , since we can represent ( ) ( )1 , ,0δ δ δ δ+ = ⊕ ⊕j jL jR jL jRk  and the 

assumption 0δ =jL contradicts Thereom 1. Moreover, 1
1DDT , 2n

j jδ δ −
+  ≠  , since

( )1 ,j jL jR jLδ δ δ δ+ ≠ ⊕ , ( ) ( )1 , ,0δ δ δ δ+ ≠ ⊕ ⊕j jL jR jL jLk  ,  and representing ( )1 ,j jL jR jLδ δ δ δ+ = ⊕ ⊕  

( ),jRk 0  along with  0δ δ⊕ =jL jR  implies that  1
1DDT , 2n

j jδ δ −
+  ≠  .  

If ( )1 ,0δ + =j jLk , then 1DDT , 2n
j jδ δ +  ≠   since ( )1 ,j jL jR jLδ δ δ δ+ ≠ ⊕ . Similarly,  

javascript:;
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2
1DDT , 2n

j jδ δ −
+  ≠   since ( ) ( )1 , ,0δ δ δ δ+ = ⊕ ⊕j jL jR jL jLk and 0δ =jL . Also, 1

1DDT , 2n
j jδ δ −

+  ≠   

since ( )1 ,j jL jR jLδ δ δ δ+ ≠ ⊕ , ( ) ( )1 , ,0δ δ δ δ+ ≠ ⊕ ⊕j jL jR jL jRk  and expressing ( )1 ,j jL jR jLδ δ δ δ+ = ⊕ ⊕   

( ), jLk0  along with the assumption 0δ =jL   proves the claim.  

If ( )1 ,j jR jLk kδ + = , then 1DDT , 2n
j jδ δ +  ≠   since ( )1 ,j jL jR jLδ δ δ δ+ ≠ ⊕ . Also,  

2
1DDT , 2n

j jδ δ −
+  ≠   since ( ) ( )1 , ,j jL jR jL jR jLk kδ δ δ δ+ = ⊕ ⊕  but 0δ =jL . Finally,  

1
1DDT , 2n

j jδ δ −
+  ≠   since ( )1 ,j jL jR jLδ δ δ δ+ ≠ ⊕ , ( ) ( )1 , ,0δ δ δ δ+ ≠ ⊕ ⊕j jL jR jL jLk  and 

( ) ( )1 , ,0δ δ δ δ+ ≠ ⊕ ⊕j jL jR jL jRk . 

Therefore, 1DP , 0j jδ δ +  =  , and moreover [ ]DP 0Ω = .  
The proof of 2) is similar to the proof of 1). # 
Actually, from the result of Theorem 3, we only need to consider Ω  in (9) when

, 1,2,...,0δ ≠ =i i n . 
Theorem 4 For n-round DBISON, let Ω  be the n-round differential characteristics given 

by (9) with ,  1, 2,...,0δ ≠ =i i n . Let also the round keys satisfy ( ) ( ) ( ){ }1 1 1, , ,iR iL iLi L i L i Lk k k k k k− + −∉ ⊕ . 

If there is 1jδ −  such that 1DP , 1j jδ δ−  =  , then 2 1DP , 1j jδ δ− −  ≠   and 1DP , 1j jδ δ +  ≠  . 

Proof By Theorem 1 and using  ,  1, 2,...,0δ ≠ =i i n , it is clear that 1DP , 1j jδ δ−  =   if and only 

if ( ) ( ) ( )( )1 1 1,j j L j R j Lδ δ δ δ− − −= ⊕  and ( ) ( ) ( ){ }1 , , , , ,0δ − ∈ ⊕j jR jL jL jL jL jRk k k k k k . 1DP , 1j jδ δ +  ≠  can 

be proved using reduction to the absurd, the proof of 2 1DP , 1j jδ δ− −  ≠   is similar, thus it is 
omitted here.  

Now, assuming that 1DP , 1j jδ δ +  =  , by Theorem 1, 1DP , 1j jδ δ +  =   if and only if 

( )1 ,j jL jR jLδ δ δ δ+ = ⊕  and ( )( ) ( ) ( )( ) ( ) ( ) ( )( ){ }1 1 1 1 1 1: , , , , ,0δδ + + + + + +∈ = ⊕
jj j R j L j L j L j L j RA k k k k k k . 

If ( )1 ,0δ − =j jRk , using that 1DP , 1j jδ δ−  =  , we get ( ) ( ), ,0 0 0δ = ⊕ =j jR jRk k . Combining 

this with 1DP , 1j jδ δ +  =  , we have ( ),0 δδ= ∈
jjR jk A  which contradicts the condition that 

( )1iR i Lk k +≠ . 

If ( )1 ,j jL jLk kδ − = , using that 1DP , 1j jδ δ−  =  , we get ( ) ( ), ,0δ = ⊕ =j jL jL jL jLk k k k . 

Combining this with 1DP , 1j jδ δ +  =  , we have ( ),0 δδ= ∈
jjL jk A  which contradicts the 

condition that ( )1iR i Lk k −≠ . 

If ( )1 ,j jL jL jRk k kδ − = ⊕ , using that 1DP , 1j jδ δ−  =  ,  we get  

( ) ( ), ,j jL jR jL jL jR jLk k k k k kδ = ⊕ ⊕ = .  

Again, combining this with 1DP , 1j jδ δ +  =  , we have ( ),
jjR jL jk k Aδδ= ∈  which contradicts 

the condition that ( )1iR i Lk k +≠ . 

Therefore, the assumption that 1DP , 1j jδ δ +  =   does not hold, thus 1DP , 1j jδ δ +  ≠  . # 

By Theorem 4, we know that any two consecutive factors of [ ] [ ]1
1

DP DP ,
n

i i
i

δ δ−
=

Ω =∏  



1620                                                                                     Zhao et al.: A New BISON-like Construction Block Cipher: DBISON 

cannot be 1 simultaneously, hence there are at most / 2n  multiplicative factors that are equal 
1. Moreover, because [ ] { }2

1DP , 0,  1/ 2 ,  1/ 2,  1i iδ δ− ∈ , it is clear that [ ] / 2DP 2 n−Ω ≤ .  
Theorem 5 For n-round DBISON, let Ω  be the n-round differential characteristic given 

by (9), with ,  1, 2,...,0δ ≠ =i i n . Let the round keys satisfy: 

( ) ( ) ( ) ( ){ }1 1 1 2, , , ,iR iL iLi L i L i L i Rk k k k k k k− + − −∉ ⊕  and ( )1iL i Lk k +≠ .  

If [ ] [ ]2 1 1DP , DP , 1i i i iδ δ δ δ− − += = , then [ ]1DP , 1/ 2i iδ δ− ≠ . 
Proof Assume [ ]1DP , 1/ 2i iδ δ− = . By Theorem 1, [ ]1DP , 1/ 2i iδ δ− =  if and only if one of the 
following cases occurs. 

Case 1.  

( ) ( ) ( )( )1 1 1,i i L i R i Lδ δ δ δ− − −= ⊕ ( )( ){ ( )( ) ( ) ( )( ) ( )( ( ) )1 1 1 1 1 1, , , , , , ,0 0δ δ δ δ δ δ− − − − − −∈ ⊕ ⊕iR iLi L i L i L i R i L i Rk k   

( ) { } ( ) ( ) { }} 11 1 1, , , :0 0δ δ δ− − −∉ ⊕ ∉ =iL iRi L i L i Rk k A . 

Using [ ]1DP , 1i iδ δ + = , we get ( )( ) ( ) ( )( ) ( ) ( ) ( )( ){ }1 1 1 1 1 1: , , , , ,0δδ + + + + + +∈ = ⊕
ii i R i L i L i L i L i RA k k k k k k . Due to 

the conditions that the round keys satisfy, 1 i
A Aδ∩ ≠ ∅  if and only if ( ) ( )1 1i L i Rkδ − += . However, 

using [ ]2 1DP , 1i iδ δ− − = , we get ( ) ( ) ( ) ( ){ }1 2 2 1 ,0δ δ δ− − − −= ⊕ ∈i L i L i R i Rk  which means ( ) ( )1 1i R i Rk k+ −= , a 
contradiction.  

Case 2. ( ) ( ) ( )( ) ( )1 1 1, ,0δ δ δ δ− − −= ⊕ ⊕i iLi L i R i L k , ( ) ( ) { }1 1 ,0δ δ− −⊕ ∈ iRi L i R k  and ( ) { }1 ,0δ − ∉ iLi L k . 

In this case, ( )( ) ( )( ) ( ) { }{ } 21 1 1, , , , :0 0δ δ δ δ− − −∈ ⊕ ⊕ ∉ =i iL iR iL iLi L i L i Lk k k k A . Using 

[ ]1DP , 1i iδ δ + = , we get 
ii Aδδ ∈ . 1 i

A Aδ∩ ≠ ∅  if and only if ( ) ( )1 1iLi L i Rk kδ − +⊕ = . However, since 

[ ]2 1DP , 1i iδ δ− − = , then ( ) ( ) ( ) ( ){ }1 2 2 1 ,0δ δ δ− − − −= ⊕ ∈i L i L i R i Rk  which implies that ( ) ( )1 1iL i R i Rk k k+ −= ⊕  

or ( )1i Rk + , a contradiction.  

Case 3. ( ) ( ) ( )( ) ( )1 1 1, ,0δ δ δ δ− − −= ⊕ ⊕i iRi L i R i L k , ( ) ( ) { }1 1 ,0δ δ− −⊕ ∉ iRi L i R k  and ( ) { }1 ,0δ − ∈ iLi L k .  

In this case, ( ) ( )( ) ( ) ( )( ) ( ) ( ) { }{ }1 1 1 1 1 1, , , ,0 0δ δ δ δ δ δ δ− − − − − −∈ ⊕ ⊕ ⊕ ⊕ ⊕ ∉i iR iR iL iRi L i R i L i R i L i Rk k k k

3: A= . By [ ]1DP , 1i iδ δ + = , we have
ii Aδδ ∈ . Then, the conditions imposed on the round keys 

imply that 3 i
A Aδ∩ = ∅ . 

To summarize,  the assumption [ ]1DP , 1/ 2i iδ δ− =  cannot hold. # 
Remark 2 For n-round DBISON, let Ω  be the n-round differential characteristic given 

by (9) with ,  1, 2,...,0δ ≠ =i i n . Assuming that the round keys satisfy the conditions of 
Theorem 5, we cannot possibly have the case [ ] ( ) ( )1 1/ 2 1 1/ 2 1...DP Ω = × × × × . 

Theorem 6 For n-round DBISON, let Ω  be the n-round differential characteristic given 
by  (9) with , 1, 2,...,0δ ≠ =i i n . Assume that the round keys satisfy 
1) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }1 2 2 1 1 2 1, , , , , ,iR iL iL iLi L i L i L i L i L i L i Rk k k k k k k k k k k− + − − − + −∉ ⊕ ⊕ ⊕ . 

2) ( ) ( ) ( ) ( ) ( ){ }2 1 1 1 2, , ,iL iRi L i L i R i R i Rk k k k k k k− − + + +∉ ⊕ ⊕ . 

3) ( ) ( )1 1iL iRi L i Rk k k k− +⊕ ≠ ⊕  .  
If [ ] [ ]2 1 1DP , DP ,i i i iδ δ δ δ− − += 1= , then [ ] 2

1DP , 1/ 2i iδ δ− ≠ . 
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Proof Assume [ ] 2
1DP , 1/ 2i iδ δ− = . By Theorem 1, [ ] 2

1DP , 1/ 2i iδ δ− =  if and only if one of the 
following cases occurs. 

Case 1. ( ) ( ) ( )( )1 1 1,i i L i R i Lδ δ δ δ− − −= ⊕ , ( ) { }1 ,0δ − ∉ iLi L k  and ( ) ( ) { }1 1 ,0δ δ− −⊕ ∉ iRi L i R k  

Using [ ] [ ]2 1 1DP , DP , 1i i i iδ δ δ δ− − += = , one can deduce:  

( ) ( )(1 1, ,i iL iR iL i Rδ δ δ δ δ+ −= ⊕ = ( ) ( ) ) ( ) ( )( )1 1 2 2,i L i R i L i Rδ δ δ δ− − − −⊕ = ,  

where ( ){ } 11, :0δ +∈ =iL i Lk B , and ( ) ( ) ( ) ( ) ( ){ } 22 1 1 1 1, , : .i R i R i L i L i Rk k k k Bδ − − − − −∈ ⊕ = The conditions on the 

round keys imply that 1 2B B∩ =∅ , which contradicts the fact that ( )2iL i Rδ δ −= .  

Case 2. ( ) ( ) ( )( ) ( )1 1 1, ,0δ δ δ δ− − −= ⊕ ⊕i iLi L i R i L k , ( ) { }1 ,0δ − ∉ iLi L k  and ( ) ( ) { }1 1 ,0δ δ− −⊕ ∉ iRi L i R k  

Using [ ] [ ]2 1 1DP , DP , 1i i i iδ δ δ δ− − += = , we get the following equation  

( ) ( )(1 1,i iL iR iL i Rδ δ δ δ δ+ −= ⊕ = ⊕ ( ) ( ) ) ( ) ( )( )1 1 2 2, ,iL iLi L i R i L i Rk kδ δ δ δ− − − −⊕ = ⊕ ,  

where ( ){ } 31, :0δ δ +⊕ ∈ =iL iR i Rk B , and ( ) ( ){ }2 1, :iL iL iLi L i Lk k k kδ − −⊕ ∈ ⊕ = 4B . The conditions on the 

round keys give that 3 4B B∩ =∅ , which contradicts the fact that ( )2iL iR iLi L kδ δ δ −⊕ = ⊕ . 

Case 3. ( ) ( ) ( )( ) ( )1 1 1, ,0δ δ δ δ− − −= ⊕ ⊕i iRi L i R i L k , ( ) { }1 ,0δ − ∉ iLi L k  and ( ) ( ) { }1 1 ,0δ δ− −⊕ ∉ iRi L i R k  

Using [ ] [ ]2 1 1DP , DP , 1i i i iδ δ δ δ− − += = , we have  

( ) ( )(1 1,i iL iR iL i Rδ δ δ δ δ+ −= ⊕ = ⊕ ( ) ( ) ) ( ) ( )( )1 1 2 2, ,iR iR iR iRi L i R i L i Rk k k kδ δ δ δ− − − −⊕ ⊕ = ⊕ ⊕ ,  

where 3iL iR Bδ δ⊕ ∈ , and ( ) ( ){ } 52 1, :iR iR iRi L i Lk k k k Bδ − −⊕ ∈ ⊕ = . The assumptions on the round 

keys give that 3 5B B∩ =∅ , which contradicts ( )2iL iR iRi L kδ δ δ −⊕ = ⊕ . 

Case 4. ( ) ( ) ( )( ) ( )1 1 1, ,i iR iLi L i R i L k kδ δ δ δ− − −= ⊕ ⊕ , ( ) { }1 ,0δ − ∉ iLi L k  and ( ) ( ) { }1 1 ,0δ δ− −⊕ ∉ iRi L i R k  

Again, using [ ] [ ]2 1 1DP , DP , 1i i i iδ δ δ δ− − += = , we obtain   

( ) ( )(1 1,i iL iR iL i Rδ δ δ δ δ+ −= ⊕ = ⊕ ( ) ( ) ) ( ) ( )( )1 1 2 2, ,iR iL iR iR iL iRi L i R i L i Rk k k k k kδ δ δ δ− − − −⊕ ⊕ ⊕ = ⊕ ⊕ ⊕ ,  

where 3iL iR Bδ δ⊕ ∈ , ( )2 iR iLi L k kδ − ⊕ ⊕ ( ){ } 61, :iR iL iR iLi Lk k k k k B−∈ ⊕ ⊕ ⊕ = . Similarly as above, we 
get 3 6B B∩ =∅  which contradicts ( )2iL iR iR iLi L k kδ δ δ −⊕ = ⊕ ⊕ . 

Therefore, the assumption that [ ] 2
1DP , 1/ 2i iδ δ− =  cannot hold. # 

Remark 3 For n-round DBISON, let Ω  denote the n-round differential characteristic 
given by  (9) with ,  1, 2,...,0δ ≠ =i i n . Assuming that the round keys satisfy conditions in 
Theorem 6, it is impossible to have [ ] ( ) ( )2 21 1/ 2 1 1/ 2 1...DP Ω = × × × × . 

Theorem 7 For n-round DBISON, let Ω  be the n-round differential characteristic given 
by (9), with ,  1, 2,...,0δ ≠ =i i n . Assume that the round keys satisfy ( ) ( ){ }1 1, ,iR iLi R i Lk k k k+ +∉  and

( ) ( ){ }1 1,iL iRi R i Rk k k k+ +∉ ⊕  . If [ ] [ ]1 2 3DP , DP , 1i i i iδ δ δ δ− + += = , then the following equalities cannot 

hold: [ ] [ ]1 1 2DP , DP , 1/ 2i i i iδ δ δ δ+ + += = .  
Proof By Theorem 1, the conditions on the round keys, and [ ]1DP , 1i iδ δ− = , one can deduce 
that [ ]1DP , 1/ 2i iδ δ + =  if and only if ( )1 ,i iL iLk kδ − = , ( ),0δ =i iLk , and ( )( )1 1 ,0δ + += ⊕i iL i Rk k . 

Furthermore, [ ]1 2DP , 1/ 2i iδ δ+ + =  holds if and only if ( ) ( ) ( )( )2 1 2 1,i iL iLi R i R i Rk k k k kδ + + + += ⊕ ⊕ ⊕  or 
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( ) ( ) ( )( )2 1 2 1,i iL iLi R i L i Rk k k k kδ + + + += ⊕ ⊕ ⊕ . 

If ( ) ( ) ( )( )2 1 2 1,i iL iLi R i R i Rk k k k kδ + + + += ⊕ ⊕ ⊕ , then from Theorem 1 and [ ]2 3DP , 1i iδ δ+ + = , it 
can be easily verified that 

( ) ( ) ( )( )3 2 2 2,i i L i R i Lδ δ δ δ+ + + += ⊕  and ( )( ) ( ) ( )( ) ( ) ( ) ( )( ){ }2 3 3 3 3 3 3, , , , ,0δ + + + + + + +∈ ⊕i i R i L i L i L i R i Lk k k k k k .  

This means that 

( ) ( ) ( )( )1 2 1,iL iLi R i R i Rk k k k k+ + +⊕ ⊕ ⊕ ( )( ) ( ) ( )( ) ( ) ( ) ( )( ){ }3 3 3 3 3 3, , , , ,0 + + + + + +∈ ⊕i R i L i L i L i R i Lk k k k k k ,  

which contradicts the assumptions on the round keys. If 

( ) ( ) ( )( )2 1 2 1,i iL iLi R i L i Rk k k k kδ + + + += ⊕ ⊕ ⊕ , a similar conclusion is valid. # 
Generalizing the conclusions given in Theorem 7, we observe the following. 
Remark 4 For n-round DBISON, let Ω  be the n-round differential characteristic given 

by (9) with ,  1, 2,...,0δ ≠ =i i n . Assuming that the round keys ( ),i iL iRk k k=  satisfy the 
conditions that iRk  is linearly independent from ( ) ( )1 2, ,...,+ + −iL i L i l Lk k k  and iLk  is linearly 

independent from ( ) ( )1 2, ,...,+ + −iR i R i l Rk k k , then [ ] [ ] [ ]1 1 2 2 1
1DP , DP , ... DP ,
2

δ δ δ δ δ δ+ + + + − + −= = = =i i i i i l i l  

and [ ] [ ]1 1DP , DP , 1i i i l i lδ δ δ δ− + − += =  cannot hold.  
By Remarks 2, 3, 4, for n-round DBISON (whose round keys satisfy certain conditions) 

and Ω  described by (9) with ,  1, 2,...,0δ ≠ =i i n , if there exists a differential characteristic of 
the form  

[ ] [ ] ( ) ( ) ( ) ( )2 2
1

1

DP DP , 1 1/ 2 1/ 2 1 1/ 2 1/ 2 1...
n

i i
i

δ δ−
=

Ω = = × × × × × ×∏ ,  

then the probability of this differential characteristic is maximal. Then,  

[ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 /31 /3/32 2 2
1

1

DP , 1 1/ 2 1/ 2 1 1/ 2 1/ 2 1... 1 1/ 2 1/ 2 :
n nnn

i i
i

h nδ δ
− −       

−
=

= × × × × × × = =∏ . 

Table 2 gives some values of ( )h n  for different n. Most notably, ( ) 1/ 2nh n =  if n is divisible 
by 6, otherwise, ( ) 11/ 2nh n −= . 

Remark 5 For n-round DBISON, we have 1MDP 1/ 2n−≤  when the round keys satisfy 
the conditions given in the previous theorems. Therefore, we conclude that n-round DBISON 
is resistant against differential cryptanalysis. 

 
Table 2. Values of h(n) 

n 6 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 

h(n) 2-6 2-9 2-13 2-18 2-21 2-25 2-30 2-33 2-37 2-42 2-45 2-49 2-54 2-57 2-61 2-66 

n 70 74 78 82 86 90 94 98 102 106 110 114 118 122 126 130 

h(n) 2-69 2-73 2-78 2-81 2-85 2-90 2-93 2-97 2-102 2-105 2-109 2-114 2-117 2-121 2-126 2-129 

n 134 138 142 146 150 154 158 162 166 170 174 178 182 186 190 194 

h(n) 2-133 2-138 2-141 2-145 2-150 2-153 2-157 2-162 2-165 2-169 2-174 2-177 2-181 2-186 2-189 2-193 

n 198 202 206 210 214 218 222 226 230 234 238 242 246 250 254 258 

h(n) 2-198 2-201 2-205 2-210 2-213 2-217 2-222 2-225 2-229 2-234 2-237 2-241 2-246 2-249 2-253 2-258 
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4. Linear cryptanalysis of the DBISON block cipher 
To evaluate the resistance of DBISON against linear cryptanalysis, we need to specify the 
linear approximation table (LAT) of the round function ( ),k wF x . Recall that ( ),k wF x  was 
defined in (1), where the linear functions 

iLkΦ  and 
iRkΦ  are given by: 

( )
( )( ) ( )

( )
( )( ) ( )

1,..., 1, ( ) 1,..., / 2

1,..., 1, ( ) 1,..., / 2

L i kL

R i kR

k L L L L L L

k R R R R R R

x x k x i k i k n

x x k x i k i k n

Φ = ⊕ − +  

Φ = ⊕ − +  
    ,                       (10) 

where  ( )Li k and ( )Ri k  denote the indices of the lowest bit which is set to 1 in Lk , Rk , 
respectively. Moreover, it is easy to deduce that 

LkΦ  and 
RkΦ  are both linear functions ,

{ }Ker ,0Φ =
Lk Lk , and { }Ker ,0Φ =

Rk Rk . In particular, the notation  

( )( ) ( )1,..., 1, ( ) 1,..., / 2
L L L L Li kx k x i k i k n⊕ − +     

refers to an ( )/ 2 1n − -bit vector, which consists of the bits of ( )L L Li kx k x⊕  except for the 

( )L thi k  bit. 
Theorem 8 For the round function ( ),k wF x  of DBISON, which is defined by (2) and  

(10), the entries of  LAT of ( ),k wF x  are determined as: 
1) [ ]

,

1LAT , 2
k w

n
F a b −=  , if 0,  • = • = =L R R L R Lb k b k a b  and 0⊕ ⊕ =L L Ra b b . 

2) [ ] ( )
,

3 / 2 1 /2LAT , 2
k w

n
F a b −= ± , if 0,  1,  • = • = =L R R L R Lb k b k a b  and 0⊕ ⊕ =L L Ra b b . 

3) [ ] ( ) ( )( ),

3 / 2 1 /2 3 /2 1 /2LAT , 2 ,2
k w

n n
F a b − −∈ −  , if 1• =L Rb k  and ( ) 0⊕ • =L L Ra b k . 

4) Otherwise, [ ]
,

LAT , 0
k wF a b = . 

Proof By Definition 1, it is clear that 

[ ] ( ){ } ( )
, ,

1
2 ,

1LAT , : 0 2 ,
2

−= ∈ • ⊕ • = − =
k w k w

n n
F k w Fa b x F a x b F x W a b . 

( ) ( ) ( ),

,

2

, : 1 • ⊕ •

∈

= −∑ k w

k w
n

a x b F x
F

x F

W a b  

                  ( ) ( )( )( ) ( )( )( )
2

1 • ⊕ • ⊕ • ⊕ ⊕ ⊕Φ ⊕ ⊕ • ⊕ ⊕Φ

∈

= −∑ L L R R L L R R R k L R R R L L L k L LR L

n

a x a x b x x f w x x k b x f w x k

x F

 

( )( ) ( )( ) ( )( ) ( ) ( )( )
/2 /2

2 2

1 1 .⊕ ⊕ • ⊕ ⊕Φ • ⊕ • ⊕ ⊕Φ ⊕Φ •

∈ ∈

= − −∑ ∑L L R L L L k L R L R L R R R k L k R L RL R R

n n
L R

a b b x f w x b k a b x f w x x b k

x F x F

 

According to the value of •L Rb k , ( )
,

,
k wFW a b  can be calculated in the following cases. 

Case 1. 0• =L Rb k . 

In this case, ( ) ( )( ) ( )( ) ( )( )
,

/2 /2
2 2

1, 1 1 :⊕ ⊕ • ⊕ ⊕Φ • ⊕ •

∈ ∈

= − − =∑ ∑L L R L L L k L R L R L RL

k w
n n

L R

a b b x f w x b k a b x
F

x F x F

W a b W . 

If R La b≠ , then ( )( )

/2
2

1 0⊕ •

∈

− =∑ R L R

n
R

a b x

x F

, thus 1 0W = . 

If R La b= , then ( )( ) ( )( )
/2

2

/ 2
1 2 1 ⊕ ⊕ • ⊕ ⊕Φ •

∈

= −∑ L L R L L L k L R LL

n
L

a b b x f w x b kn

x F

W . On the one hand, if 

0• =R Lb k , then ( )( )

/2
2

/ 2
1

0,    if  ,
2 1

2 ,  if  .
0
0

⊕ ⊕ •

∈

⊕ ⊕ ≠
= − =  ⊕ ⊕ =

∑ L L R L

n
L

a b b x L L Rn
n

L L Rx F

a b b
W

a b b
 On the other hand, if 
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1• =R Lb k , then ( )( ) ( )( )
/2

2

/ 2
1 2 1 ⊕ ⊕ • ⊕ ⊕Φ

∈

= −∑ L L R L L L k LL

n
L

a b b x f w xn

x F

W . Assuming that ( )
Lk L Lx yΦ = , using 

that 
LkΦ is linear and { }Ker ,0Φ =

Lk Lk , we obtain  
 
( )( ) ( )( ) ( )( ) ( ) ( )( ) ( ) ( )

/2 /2 1 /2 1
2 2 2

1 1 1
− −

′ ′⊕ ⊕ • ⊕ ⊕Φ ⊕ ⊕ • ⊕ ⊕ ⊕ ⊕ • ⊕ ⊕ ⊕

∈ ∈ ∈

− = − + −∑ ∑ ∑L L R L L L k L L L R L L L L L L R L L L L LL

n n n
L L L

a b b x f w x a b b y f w y a b b y k f w y

x F y F y F

 
( )( ) ( )( ) ( )

/2 1
2

1 1 1
−

′⊕ ⊕ • ⊕ ⊕ • ⊕ ⊕

∈

 = + − −  ∑L L R L L L R L L L L

n
L

a b b k a b b y f w y

y F

, 

where Ly′  is the same as y with an additional bit set to zero at position ( )Li k . Furthermore, if 
( ) 1⊕ ⊕ • =L L R La b b k , then /2

1 2 0 0.nW = × =  If ( ) 0⊕ ⊕ • =L L R La b b k , then  

( )( ) ( )

/2 1
2

/ 2 1
1 2 1

−

′⊕ ⊕ • ⊕ ⊕+

∈

= −∑ L L R L L L L

n
L

a b b y f w yn

y F

W  

Let L L Lw y u⊕ = , and accordingly ( )( ) ( )( ) ( )

/2 1
2

/ 2 1
1 2 1 1

−

′′ ′′ ′′ ′′ ′′ ′′⊕ ⊕ • ⊕ ⊕ • ⊕+

∈

= − −∑L L R L L L R L L L

n
L

a b b w a b b u f un

u F

W , where 

La′′  is an ( )/ 2 1n − -dimensional vector obtained by removing the bit in position ( )Li k  of La . 
Since Lf  is a bent function, then ( )( ) ( )( ) ( )/ 2 1 /2 3 /2 1 /2/2 1

1 2 1 2 2′′ ′′ ′′⊕ ⊕ • − ++= − ± = ±L L R La b b w n nnW . 
Case 2. 1• =L Rb k . 

( ) ( )( ) ( )( ) ( )( ) ( ) ( )( )
,

/2 /2
2 2

, 1 1 .⊕ ⊕ • ⊕ ⊕Φ • ⊕ • ⊕ ⊕Φ ⊕Φ

∈ ∈

= − −∑ ∑L L R L L L k L R L R L R R R k L k RL R R

k w
n n

L R

a b b x f w x b k a b x f w x x
F

x F x F

W a b  

For any fixed /2
2
n

Lx F∈ , it can be calculated that 

( )( ) ( ) ( )( ) ( )
( )( ) ( )( ) ( ) ( )/2

2

/ 2 1 /2

0,                                             1,
1

1 2 ,  0.
⊕ • ⊕ ⊕Φ ⊕Φ

′′ ′′⊕ • ⊕Φ +
∈

⊕ • =− = 
± − ⊕ • =

∑ R L R R R k L k RR R

R L R k LRn
R

R L Ra b x f w x x

a b w x n
x F R L R

if a b k

if a b k
 

Thus, if ( ) 1⊕ • =R L Ra b k , then ( )
,

/ 2, 2 0 0
k w

n
FW a b = × = . If  ( ) 0⊕ • =R L Ra b k , then  

( ) ( ) ( )( ) ( )( ) ( ) ( )( )
,

/2
2

/ 2 1 /2, 2 1 ′′ ′′⊕ ⊕ • ⊕ ⊕Φ • ⊕ ⊕ • ⊕Φ+

∈

= ± −∑ L L R L L L k L R L R L R k LL R

k w
n

L

a b b x f w x b k a b w xn
F

x F

W a b . 

Thus, ( ) ( ) ( )
,

3 / 2 1 /2 3 /2 1 /22 , 2
k w

n n
FW a b+ +− ≤ ≤ , where the equalities hold if and only if for all 

/2
2
n

Lx F∈ , we have 
( ) ( )( ) ( ) ( )( ) 0′′ ′′⊕ • ⊕Φ ⊕ ⊕ ⊕ • ⊕ ⊕Φ • =

R LR L R k L L L R L L L k L R La b w x a b b x f w x b k  or 1.  
The probability that these extreme cases occurring is very small, thus we can suppose 

( ) ( ) ( )
,

3 / 2 1 /2 3 /2 1 /22 , 2
k w

n n
FW a b+ +− < < . # 

Theorem 9 For DBISON cipher, let its round function ( ),k wF x  be given by (2) and  (10).  

If the number of rounds is / 2 3r n= + ,  then we have ( )1MLP 2 n− −<  for 4.n >  
Proof Assume that there exists a nontrivial linear characteristic ( )0 1 /2 3, ,..., nθ θ θ θ += . In 
particular, let the linear characteristic ( )*

0 1 /2, ,..., nθ θ θ θ=  be such that ( )1LP , 1i iθ θ− = , 
1, 2,..., / 2i n= . By Theorem 8, we have ( )1LP , 1i iθ θ− =  if and only if 0θ θ• = • =iL iR iR iLk k , 

( )1iL i Rθ θ −=  and ( ) ( )1 1iR i L i Rθ θ θ− −= ⊕ . Note that there are two constraints (two-bit constraint 
conditions) for each round subkey, i.e. 0.θ θ• = • =iL iR iR iLk k  In this case, considering / 2n  
rounds, the cardinality of a weak subkey set (satisfying the constraint conditions) should be 
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only 2 ( /2)2 2 1n n− ×× =  on average. On the other hand, if there are / 2 3 / 2 3n n+ − =  rounds, then 
the linear characteristic ( )*

/2 /2 1 /2 2 /2 3, , ,n n n nθ θ θ θ θ+ + +=  exists with probability 
( ) ( )3/2 1 3 /2 32 2 .n n− − − −  =    Therefore, ( )1MLP 2 n− −<  for 4.n >  
Remark 6. To resist algebraic attacks, the default round number should be at least 3n. 

5. DBISON instances and implementation results 
In this section, we discuss our implementation of DBISON encryption algorithm with input 
block size of 10 bits, where the generations of round keys, whitened keys and round 
constants are also specified. Similarly to the standard BISON encryption algorithm, the bent 
function used in this instance of DBISON is the quadratic function ( )1 2 1 2, = •f X X X X , 
where 5

2iX F∈ . The differential uniformity and nonlinearity for round-reduced versions of 
DBISON consisting of 30 rounds (alternatively 10 or 20 rounds) and for different instances 
(specifying different secret keys via LFSRs) are given.  The truth table of one particular 
instance and the intermediate values for 30 encryption rounds are given in Appendix A and 
B, respectively.  

Assume that the input bit string for DBISON is ( )10 9 1, ,...,=x x x x , which is divided into 
two parts, i.e. ( )10 9 6, ,...,=Lx x x x  and ( )5 4 1, ,...,=Rx x x x . The first encryption round is described 
below. 

• The encryption operation for the left branch includes the following five steps. 
1) The left key Lk  is derived from the state of an LFSR, where the primitive polynomial 

used is 5 2 1x x+ + , and the initial state belongs to { }5
2 \ 0F . 

2) ( )
( )( ) ( )1,..., 1, ( ) 1,...,5

L i kL
k L L L L L Lx x k x i k i kΦ = ⊕ − +   . 

3) The left whitened key Lw  is derived from the state of another LFSR, where the 
primitive polynomial used is 4 3 1x x+ + , and the initial state is fixed by (1, 0, 0, 0). The 
round constant LC  is derived from the state of the same LFSR, and the initial state is 
given by (0, 0, 0, 1). 

4) ( ) ( )4 3 2 1, , ,
Lk L L Lx w C y y y yΦ ⊕ ⊕ =  , ( )4 3 2 1 4 2 3 1, , , Lf y y y y y y y y b= ⊕ ⊕ , and 0Lb =  for the 

first r/2 rounds, and 1Lb =  for the remaining r/2 rounds, where r is the number of rounds. 
5) The value of ( )4 3 2 1, , ,L Lx f y y y y k⊕  is calculated. 

• The encryption operation for the right branch contains the five portions below. In 
particular, the input string for the right branch is L Rx x⊕ , denote it as Rx′ . 

1) The right-hand part of the key Rk  is derived from the state of an LFSR, where the 
primitive polynomial used is given by 5 3 1x x+ + , and the initial state belongs to { }5

2 \ 0F . 

2) ( )
( )( ) ( )1,..., 1, ( ) 1,...,5

R i kR
k R R R R R Rx x k x i k i k′ ′ ′Φ = ⊕ − +   . 

3) The right-hand part of the whitened key Rw  is derived from the state of another LFSR, 
the primitive polynomial used is given by 4 1x x+ + , and the initial state is fixed by (1, 0, 
0, 1). The round constant RC  is derived from the state of the same LFSR, and the initial 
state is fixed by (0, 0, 0, 1). 

4) ( ) ( )4 3 2 1, , ,
Rk R R Rx w C y y y y′ ′ ′ ′ ′Φ ⊕ ⊕ =  , ( )4 3 2 1 4 2 3 1, , , Rf y y y y y y y y b′ ′ ′ ′ ′ ′ ′ ′= ⊕ ⊕ ,  and 0Rb =  for the 
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first r/2 rounds and 1Rb =  for the remaining r/2 rounds, where r is the number of rounds. 
5) The value of ( )4 3 2 1, , ,R Rx f y y y y k′ ′ ′ ′ ′⊕  is calculated. 

Finally, the output value of the first round is ( ) ( )( )4 3 2 1 4 3 2 1, , , , , , ,R R L Lx f y y y y k x f y y y y k′ ′ ′ ′ ′⊕ ⊕ . 
Similarly, in the second round, k, w and C are also derived from the states of the 
corresponding LFSRs in the next clock, and so on. More specifically, the initial state of the 
LFSR for deriving Lk  in the first encryption round is fixed to any value in { }5

2 \ 0F . On the 
other hand, the initial state of the LFSR for deriving Rk  in the first round, selects another 
value Lk  in { }5

2 \ 0F . This gives in total 930 instances (different keys) of DBISON which we 
have checked. The differential uniformities and nonlinearities of these instances for 
DBISON that implements 10, 20 and 30 encryption rounds are verified, respectively. These 
results are described in Fig. 2 and Fig. 3. In particular, the horizontal axis represents the 
value of the differential uniformity (nonlinearity), whereas the vertical axis is the number of 
instances whose differential uniformity (nonlinearity) is fixed. 
 

 

Fig. 2(a). The differential uniformities of 10-round DBISON 

                                     

Fig. 2(b). The nonlinearities of 10-round DBISON 

In Fig. 2, for DBISON consisting of 10 encryption rounds, the differential uniformity is 
mainly distributed among the values 12, 14, 16 and 18. Actually, these values have a 
percentage of approximately 92.26%. On the other hand, the maximal nonlinearity that has 
been achieved in the simulations is 440. Also, the nonlinearity in the range between 384 and 
440 stands for the percentage of approximately 95.91%. In fact, it means that these functions 
achieve relatively high nonlinearity. (note that the nonlinearity of bent functions is 496, and 
the nonlinearity of almost optimal functions is 480 when n=10.) Moreover, the best 
differential uniformity of these instances is 14, and the nonlinearity is 440, which is quite 
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close to the almost optimal functions. This illustrates that most of these DBISON instances 
have quite good differential uniformity and nonlinearity, though only 10 encryption rounds 
are considered. 

 

Fig. 3(a). The differential uniformities of 30-round DBISON  

 

 
             Fig. 3(b). The nonlinearities of 30-round DBISON  

Fig. 3(a) illustrates that the differential uniformity takes values 12 and 14 with the 
percentage of approximately 93.51%, when the number of rounds is 30. The nonlinearity 
distribution is given in Fig. 3(b) and the nonlinearities between 428 and 442 occur with the 
percentage of approximately 95.2%. There exist many DBISON instances, using 30 rounds, 
whose differential uniformity equals 12 and having nonlinearity 442. The truth table of one 
of these instances is given in Appendix A, whereas the test vectors for each round are 
provided in Appendix B. 

In addition, the differential uniformities and nonlinearities of DBISON instances using 
20 rounds can be found in Appendix C. Comparing the 20-round and 30-round results, it is 
clear that their performances are quite close (of course 30-round DBISON is somewhat 
better). Of course, all DBISON instances are balanced bijections. Therefore, DBISON has 
quite good cryptographic performance. 

Similarly to the encryption operation, the decryptions of left branch and right branch are 
also performed in parallel. More precisely, let ( ) ( )( )LL L L L L k L Lx x f w x kτ = ⊕ ⊕Φ , 

( ) ( )( )RR R R R R k R Rx x f w x kτ = ⊕ ⊕Φ , ,Lx  /2
2
n

Rx F∈ . Then, Lτ  and Rτ  can be derived as below. 
For any /2

2
n

Lx F∈ ,  
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( ) ( )( )( )LL L L L L L L k L Lx x f w x kτ τ τ= ⊕ ⊕Φ
 

                 ( )( ) ( )( )( )( )L L LL L L k L L L L k L L L k L L Lx f w x k f w x f w x k k= ⊕ ⊕Φ ⊕ ⊕Φ ⊕ ⊕Φ . 

If ( )( ) 0
LL L k Lf w x⊕Φ = , it is clear that ( )L L L Lx xτ τ = . If  ( )( ) 1

LL L k Lf w x⊕Φ = , then we 
have 

( ) ( )( ) ( )( )L LL L L L L L L k L L L L L L L k L L Lx x k f w x k k x k f w x k xτ τ = ⊕ ⊕ ⊕Φ ⊕ = ⊕ ⊕ ⊕Φ = , 
because  { }Ker ,0Φ =

Lk Lk . Thus, Lτ  is involutory, and this also holds for Rτ . 
Note that the round function ( )F x  of DBISON can be represented as 

( ) ( ) ( )( ),R L R L LF x x x xτ τ= ⊕ . Then, the output of the left branch is ( )L R L Ry x xτ= ⊕ , and the 
output of the right branch is  ( )R L Ly xτ= . Since both Lτ  and Rτ  are involutory, we have 

( )L L Rx yτ= , ( )L R R Lx x yτ⊕ =  , that is, ( ) ( )R R L L Rx y yτ τ= ⊕ . The round decryption function 

is ( ) ( ) ( ) ( )( )1 ,  L R R L L RF y y y yτ τ τ− = ⊕ , see Fig. 4. Therefore, the decryption process actually 
uses the reversed encryption round keys. 

 
Fig. 4. The decryption round function ( )1F y−  of DBISON 

6. Conclusion 
In this paper, a new block cipher DBISON has been proposed, which employs double layers 
of a BISON-like construction. Compared to the original BISON cipher, DBISON divides the 
input into two halves and the nonlinear round function is computed in parallel, which results 
in a better performance in both software and hardware. Moreover, DBISON consisting of 3n 
rounds is provably resistant against differential and linear attacks. More precisely, it is 
shown the MDP is 11/ 2n− for n encryption rounds, and the MLP is strictly less than 1/2n-1 
when (n/2 + 3) encryption rounds are used. Actually, if we select the data block size n = 258, 
then both MDP and MLP of DBISON are very close to the ideal value. 
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Appendix 

A. The truth table of a permutation F on 10
2F  of one DBISON instance given in hexadecimal 

format (r = 30, differential uniformity is 12, nonlinearity is 442） 
 
0E7 35A 324 2E8 11B 08A 29A 025 3AB 3BA 3CE 2C1 1A9 143 0F4 155 

07D 10A 228 15C 177 2FB 081 2D4 28D 0A8 010 088 35C 152 142 1FA 

326 056 2CB 1B7 310 1A4 0AD 0FD 11D 218 29C 186 175 1C8 257 0BB 

2C2 2BE 377 208 0A6 115 189 057 092 291 1C5 238 1C1 104 3E8 0BD 

11C 114 27B 293 067 06D 052 132 331 0AB 27E 16E 3D0 194 26F 122 

1A0 12A 109 1BD 262 1B2 068 229 342 0D9 255 0AF 3CF 184 369 1F3 

1C9 3D6 0E1 27D 2D7 290 36F 01E 384 312 11F 049 2A9 07A 007 35E 

3AF 0B2 36A 008 0FF 063 034 01C 102 32B 009 268 3D3 261 08E 210 

0DF 339 3E6 026 17F 19F 371 0C1 20E 1CB 2A2 2AE 045 069 370 287 

289 080 11E 380 0BC 18B 0CE 2C7 2AC 265 241 121 3E1 03A 1F8 3A5 

329 2A4 252 0EE 070 0D0 0E6 10C 0B3 3EB 14C 3A2 316 38D 118 1FF 

292 382 3F7 03C 27C 06B 23D 283 22D 375 2DF 34A 079 062 353 3BC 

0EB 0F2 16B 318 181 0E2 3ED 120 090 37D 0FC 13E 1AB 385 3B4 3B5 

01F 134 21C 279 3E5 39A 191 38B 093 29D 0E4 386 311 2ED 31D 376 

006 248 065 2BF 072 105 110 18D 359 1A1 270 0EC 395 0DA 2FC 0B6 

13F 2CD 187 0D2 319 307 39C 3E7 3B8 32C 076 1A2 389 3FF 226 1B0 

2D9 2F8 18F 12B 309 28F 15D 17A 251 3BD 2DC 3A8 123 213 05F 2B9 

0D1 31A 39D 22F 18E 1A5 38C 3F4 235 346 373 0C5 335 089 1D8 1EB 

3C1 1B8 39F 10B 0BF 024 29E 394 095 09E 2AB 0C3 03E 1DA 042 02A 

3CA 12E 05C 02B 247 0CB 023 0A9 1FD 222 204 00A 11A 100 016 298 

083 34B 349 002 305 071 0F1 148 1AC 269 328 1E2 224 0C7 084 3F9 

0E0 15A 32A 21A 099 2BA 07C 147 16A 219 1AF 0F8 3DB 2B2 321 091 

356 202 1FE 1F1 3A9 0FB 237 392 25E 2C6 0A7 05B 207 2F6 2F7 157 

308 200 1ED 1A6 3A7 39E 139 112 3AD 1F4 3DA 1C6 350 23B 035 256 

314 23A 018 01A 085 01D 30C 348 097 178 1CD 399 2FA 039 2F5 16F 

337 267 1F2 201 1D2 096 37E 18C 215 2D2 0ED 082 203 153 15B 0C2 
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B. Test vectors with intermediate results for the DBISON instance in Appendix A. The input 
value is 1000011001 
 
i   iLx   

iLk  
iLw  

iLC  
iRx  

iRk  
iRw  

iRC  
1iLx
+

 
1iRx
+

 
0 10000 10110 0100 1000 11001 00110 0100 1000 01001 00110 
1 01001 01011 0010 0100 00110 10011 0010 1100 0111 01001 
2 01111 00101 1001 0010 01001 11001 0001 1110 00110 01010 
3 00110 10010 1100 1001 01010 11100 1000 1111 10000 00110 
4 10000 01001 0110 1100 00110 11110 1100 0111 10110 10000 
5 10110 00100 1011 0110 10000 11111 1110 1011 00110 10010 
6 00110 00010 0101 1011 10010 01111 1111 0101 10100 00110 
7 10100 00001 1010 0101 00110 00111 0111 1010 10101 10101 
8 10101 10000 1101 1010 10101 00011 1011 1101 00000 10101 
9 00000 01000 1110 1101 10101 10001 0101 0110 00100 00000 
10 00100 10100 1111 1110 00000 11000 1010 0011 11100 10000 
11 11100 01010 0111 1111 10000 01100 1101 1001 01100 11100 
12 01100 10101 0011 0111 11100 10110 0110 0100 10000 01100 
13 10000 11010 0001 0011 01100 11011 0011 0010 11100 10000 
14 11100 11101 1000 0001 10000 11101 1001 0001 01100 11100 
15 01100 01110 0100 1000 11100 01110 0100 1000 11110 01100 
16 11110 10111 0010 0100 01100 10111 0010 1100 10010 01001 
17 10010 11011 1001 0010 01001 01011 0001 1110 11011 01001 
18 11011 01101 1100 1001 01001 10101 1000 1111 00111 11011 
19 00111 00110 0110 1100 11011 01010 1100 0111 11100 00111 
20 11100 00011 1011 0110 00111 00101 1110 1011 11011 11111 
21 11011 10001 0101 1011 11111 00010 1111 0101 00110 01010 
22 00110 11000 1010 0101 01010 00001 0111 1010 01100 11110 
23 01100 11100 1101 1010 11110 10000 1011 1101 00010 01100 
24 00010 11110 1110 1101 01100 01000 0101 0110 01110 11100 
25 01110 11111 1111 1110 11100 00100 1010 0011 10110 10001 
26 10110 01111 0111 1111 10001 10010 1101 1001 10101 11001 
27 10101 00111 0011 0111 11001 01001 0110 0100 01100 10101 
28 01100 10011 0001 0011 10101 10100 0011 0010 01101 01101 
29 01101 11001 1000 0001 01101 11010 1001 0001 10100 11011 
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C. Distribution of the differential uniformity and nonlinearity for 20-round DBISON  
 

 
(a) Distribution of the differential uniformity for 20-round DBISON  

  
 

 
          (b) Distribution of the nonlinearity for 20-round DBISON  
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